High-Intensity Exercise Acutely Increases Substantia Nigra and Prefrontal Brain Activity in Parkinson’s Disease

نویسندگان

  • Neil A. Kelly
  • Kimberly H. Wood
  • Jane B. Allendorfer
  • Matthew P. Ford
  • C. Scott Bickel
  • Jon Marstrander
  • Amy W. Amara
  • Thomas Anthony
  • Marcas M. Bamman
  • Frank M. Skidmore
چکیده

BACKGROUND Pathologic alterations in resting-state brain activity patterns exist among individuals with Parkinson's disease (PD). Since physical exercise alters resting-state brain activity in non-PD populations and improves PD symptoms, we assessed the acute effect of exercise on resting-state brain activity in exercise-trained individuals with PD. MATERIAL AND METHODS Resting-state functional magnetic resonance imaging (fMRI) was collected twice for 17 PD participants at the conclusion of an exercise intervention. The acute effect of exercise was examined for PD participants using the amplitude of low frequency fluctuation (ALFF) before and after a single bout of exercise. Correlations of clinical variables (i.e., PDQ-39 quality of life and MDS-UPDRS) with ALFF values were examined for the exercise-trained PD participants. RESULTS An effect of acute exercise was observed as an increased ALFF signal within the right ventromedial prefrontal cortex (PFC), left ventrolateral PFC, and bilaterally within the substantia nigra (SN). Quality of life was positively correlated with ALFF values within the vmPFC and vlPFC. CONCLUSIONS Given the role of the SN and PFC in motor and non-motor symptoms in PD, the acute increases in brain activity within these regions, if repeated frequently over time (i.e., exercise training), may serve as a potential mechanism underlying exercise-induced PD-specific clinical benefits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irisin protect the Dopaminergic neurons of the Substantia nigra in the rat model of Parkinson’s disease

Objective(s): Exercise ameliorates the quality of life and reduces the risk of neurological derangements such as Alzheimer’s (AD) and Parkinson’s disease (PD). Irisin is a product of the physical activity and is a circulating hormone that regulates the energy metabolism in the body. In the nervous system, Irisin influences neurogenesis and neural differentiation in mic...

متن کامل

The effects of aqueous cinnamon bark extract and cinnamaldehyde on neurons of substantia nigra and behavioral impairment in a mouse model of Parkinson’s disease

Background and Objective: Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons in substantia nigra. In recent years, there have been interests in the role of the free radical damage in PD. Cinnamon and its derivative, cinnamaldehyde acts as powerful antioxidant and anti-inflammatory agents. This research focused on the effects of cinnamon extract and cinnamald...

متن کامل

Cinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease

Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...

متن کامل

Peganum Harmala L. Extract Reduces Oxidative Stress and Improves Symptoms in 6-Hydroxydopamine-Induced Parkinson’s Disease in Rats

Parkinson’s disease is one of the most common neurodegenerative disorders.  There are many documents about the effects of oxidative stress in Parkinson’s disease etiology. Angiotensin II activates NADPH dependent oxidases and causes superoxides formation.  Peganum harmala L. extract, which has angiotensin converting enzyme (ACE) inhibitory effect, is considered to evaluate oxidative stress inhi...

متن کامل

Pii: S0306-4522(97)00454-5

–To determine whether increased oxidative stress in substantia nigra of patients with idiopathic Parkinson’s disease might be related to decreased ability of nigral cells to detoxify oxidized membrane phospholipids, we compared levels of the major phospholipid metabolizing enzymes in autopsied substantia nigra with those in non-nigral (n=11) brain areas of the normal human brain. Whereas most e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2017